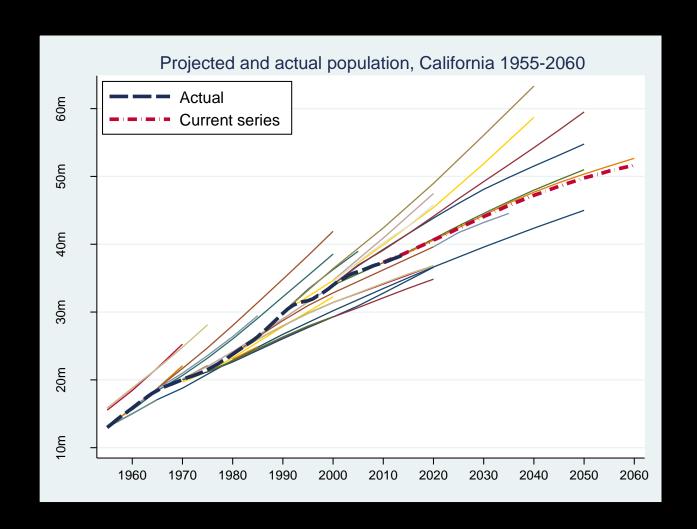
Projecting California's population: The road ahead

Simulation of demographic outcomes under uncertainty

Ethan Sharygin

Demographic Research Unit, California Department of Finance ethan.sharygin@dof.ca.gov


CA SDC Annual Meeting / Oct 8, 2015

Summary

Talk overview:

- (1) Background
- (2) Content review
- (3) Methodology
- (4) Assumptions

Background: Long-term forecasts, 1970--2060

2013 Baseline Projections (1/2015)

40 million by 2020, 50 million by 2052

2013 Basis = 2010 Census + 2011-2013 Estimates

Available files (http://www.dof.ca.gov/research/demographic/projections/):

- P-1 State and County Totals (overall; race/eth; age groups)
- P-2 State and County Totals by race/eth + age
- P-3 Complete file (race/eth + age + sex)
- P-3 Median age by race/eth + sex
- P-4 State and County Households, GQ, PPH

State and County Births

State and County Public K-12 Enrollment and HS Graduates

Next projections: road ahead

Review the following aspects of our projections process:

- (1) Content
- (2) Methods
- (3) Assumptions

Content review

"Get your **facts** first, and then you can distort them as much as you please."

Rudyard Kipling, An Interview with Mark Twain (1899)

Assessing population change

Population balancing identity:

$$P_1 = P_0 + (B - D) + (IM - OM)$$

Elements:

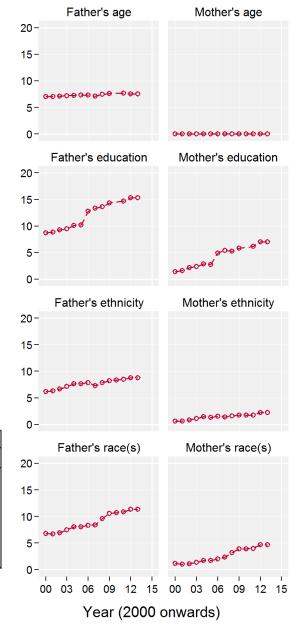
- (1) Starting population Census
- (2) Net natural increase Births, deaths
- (3) Net migration In-, out-migration

Specificity Uncertainty

Data inputs

Vital statistics database and reports from CDPH

Problems:


- (1) Increasing share missing
- (2) Linking parents' and child race
- (3) Comparability of traits at birth and death

Data processing:

- (1) Multiple imputation
- (2) Race bridging (probabilistic)
- (3) Multiple races (instead of multi-race)

	Race of Father					
Race of mother	White alone	Black alone	AIAN alone	Asian alone	NHPI alone	Two or More
White alone	97.58	0.98	0.42	0.40	0.05	0.56
Black alone	2.70	96.45	0.14	0.14	0.03	0.53
AIAN alone	34.65	2.99	59.56	0.58	0.22	2.00
Asian alone	14.19	1.29	0.15	82.79	0.19	1.40
NHPI alone	19.14	4.80	0.65	3.77	67.41	4.23
Two or more	47.34	10.11	2.07	4.62	1.14	34.72

Missing data in birth certificates: CA, 2000-2013

Percent of records missing details

Data inputs

Migration data (ACS, CPS, IRS, DMV)

Problems:

- (1) Lack of specificity
- (2) Conflicting definitions/totals

Solution:

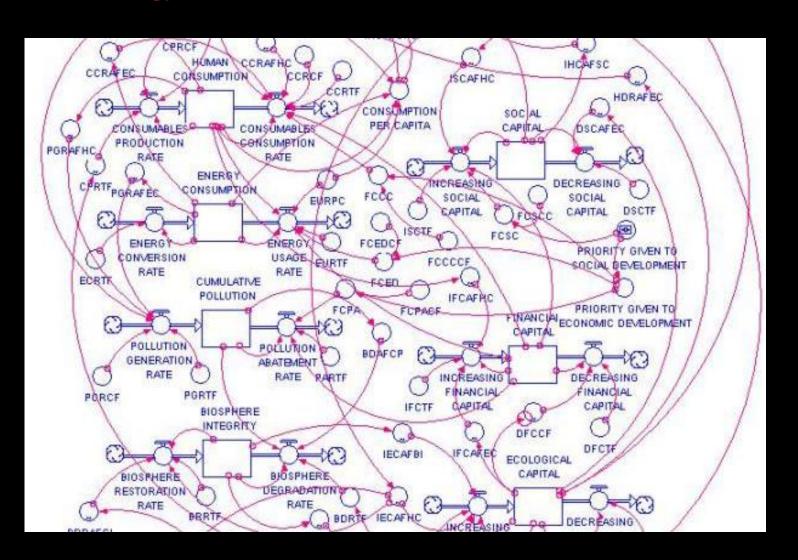
- (1) Traits from ACS
- (2) Totals from DRU
- (3) Iterative proportional fitting to reconcile

Migration to/from California (State—state)				
Years	ACS	DMV	IRS	
2005-09	-184,592	-109,636	-118,991	

Migration within California (County—county)					
Years	ACS	DMV	IRS		
2005-09	1,125,961	819,352	835,764		

Note: figures are annual averages

Data outputs


VARIANTS are designed to test sensitivity of the projection Examples of projection variants:

- (1) Fertility +/- 0.5 child
- (2) Net migration rate +/- 5 persons per 1,000

SCENARIOS are intended to model comprehensive changes Examples of alternate scenarios:

- (1) Constant fertility
- (2) Balanced net long term migration
- (3) Stationary population
- (4) Economic, housing, policy conditions

Methodology Review

Modeling population change (revisited)

Population balancing identity

$$P_1 = P_0 + (B - D) + (IM - OM)$$

Elements:

- (1) Starting population
- (2) Net natural increase Births, deaths
- (3) Net migration In-, out-migration

Specificity Uncertainty

Specificity

STOCK refers to the cross-sectional snapshot of the population. FLOW refers to the hazard rates for demographic events.

Stock should be specified by following state spaces:

- Age (~0—100+)
- Sex (~male, female)
- Fertility status (~parity)
- Location (~county, out-migrant, emigrant)
- Living arrangement (~household, prison, dormitory, hospital, etc.)
- Nativity (~place of birth)
- Race/ethnicity (~15 combinations of bridged race, Hispanic)
- Education (~primary, lower secondary, higher secondary, tertiary)
- Marital status (~never married, married, divorced, widowed)
- Mortality status (~alive, dead)

Flow should be specified by parsimonious state spaces

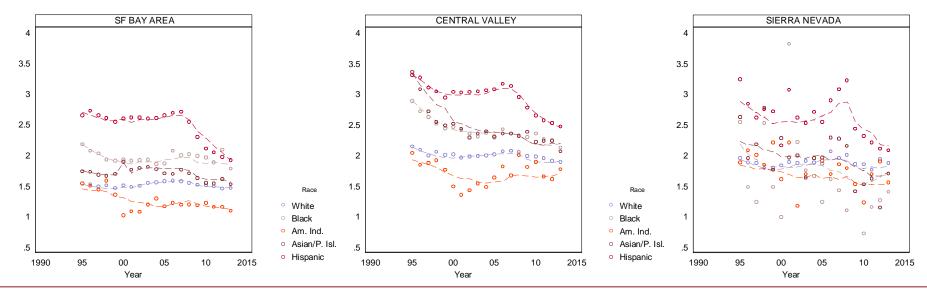

Specificity

Flow should be specified by parsimonious state spaces:

- Age
- Sex
- County
- Race/ethnicity
- (Education)

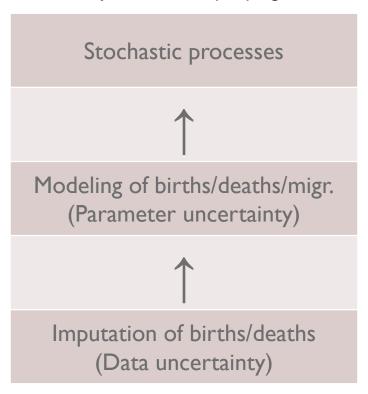
E.g., mortality model:

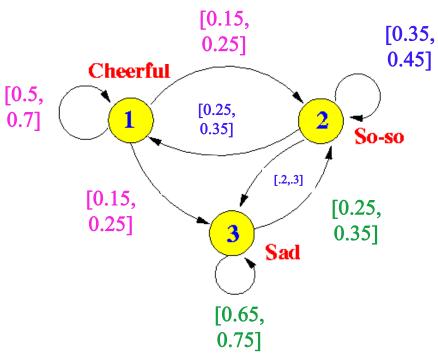
$$\begin{aligned} \ln(\mu_{ijt}) &= \ln(N_{ijt}) \\ &+ (\beta_1 + \eta_j) Y R_t \\ &+ \beta_2 E D U_{it} \\ &+ \beta_3 I N C_{it} \\ &+ \rho_i^{geo} \\ &+ \eta_j \\ &+ \eta_i \\ &+ \varepsilon_{ijt} \end{aligned}$$


Specificity

Flow should be specified by parsimonious state spaces:

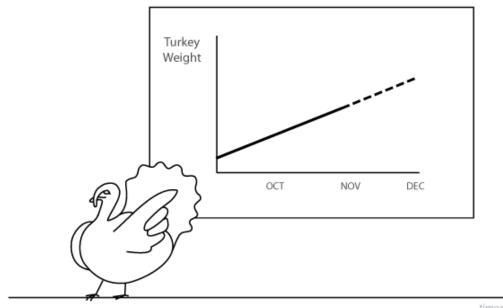
- Age
- Sex
- County
- Race/ethnicity
- (Education)


Fertility example: Total Fertility Rate by Region + Race/Ethnicity



Uncertainty

UNCERTAINTY refers to the quantifiable likelihood of outcomes other than the most likely one.


Uncertainty should be propagated from the following sources:

Revisiting assumptions

THANKSGIVING PREDICTIVE ANALYTICS

timoelliott.com

"I see no reason why excellent growth shouldn't continue..."

Forecasting assumptions: relating the past and future

Models allow better assessment of past rates

- Accurate; complete; internally consistent; dynamic
- ... but does not tell the future.

Review past sources of error

- Too influenced by contemporary trends
- Lack of feedback mechanisms (i.e., agent behavior)

In first stage, incorporate three elements in review:

- (1) Historical trends
- (2) Demographic/sociological theory
- (3) Expert judgment

An approach to uncertainty: wisdom of crowds

NATURE

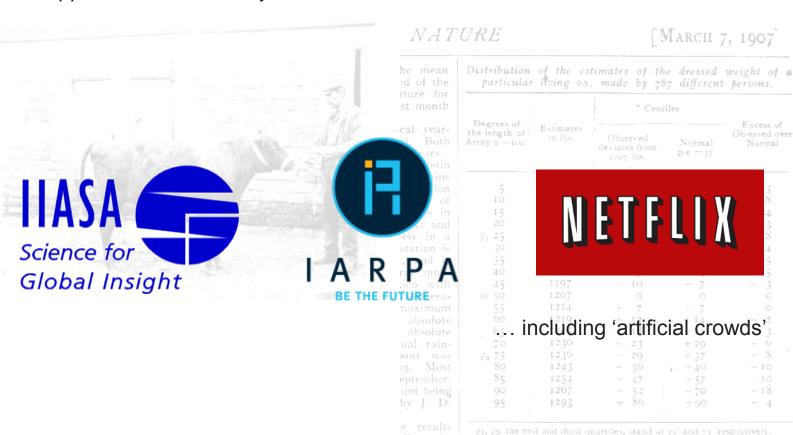
[MARCH 7, 1907]

he mean id of the iture for st month

cal year-5). Both

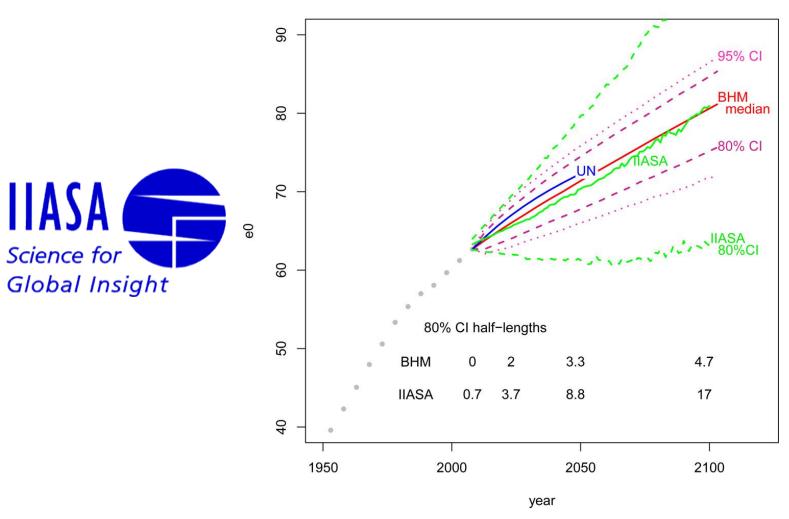
s vears. -Bulletin contains al station esults of ations in 1851 and elv in a station is , and is ral applicico with temperanaximum absolute absolute ual rainount was Most eptember.

e results Deutsche he second


unt being by J. D.

Distribution of the estimates of the dressed weight of a particular living ox, made by 787 different persons.

B P P		* Cen	1	
Degrees of the length of Array o —100°	Estimates in lbs.	Observed deviates from 1207 lbs.	Normal p.e =37	Observed over Normal
5	1074	- 133	90	+43
10	1109	- 98	- 70	+28
15	1126	- 81	- 57	+24
20	1148	- 59	- 46	+13
91 25	1162	- 45	- 37	+ 8
1 30	1174	- 33	- 29	+ 4
35	1181	- 26	- 21	+ 5
40	1188	- 19	- 14	+ 5
45	1197	- 10	- 7	+ 3
m 50	1207	0	o	. 0
55	1214	. + 7	÷ 7	0
60	1219	+ 12	+14	- 2
65	1225	+ 18	. +21	- 3
70	1230	+ 23	+ 29	
93 75	1236	+ 29	+ 37	- 8
8o	1243	+ 36	+ 40	- 10
85	1254	+ 47	+ 57	10
90	1267	+ 52	+70	- 18
95	1293	, + 86	+90	- 4


q₁, q₃, the first and third quartiles, stand at 25° and 75° respectively.
m, the median or middlemost value, stands at 50°.
The dressed weight proved to be 1198 lbs.

An approach to uncertainty: wisdom of crowds

m, the median or middlemost value, stands at 50°.

Collective wisdom of California experts in attendance