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An overview of differential privacy
• Differential privacy (DP) is a property of algorithms for answering queries. An algorithm is 

considered differentially-private for a given epsilon and delta (𝜀, 𝛿) if, for two databases 
that differ by one record, it satisfies:

Pr 𝐴 𝐷 ∈ 𝑇 ≤ exp 𝜀 Pr 𝐴 𝐷! ∈ 𝑇 + 𝛿

• DP works by injecting statistically calibrated “noise” into a query or statistic derived from 
the underlying micro data.

• This “noise” is drawn from predetermined probability distributions that have 
characteristics consistent with DP.

• The literature identifies two fundamental probability distributions used to generate the 
“noise” – the Laplace distribution and the Gaussian distribution.

• Most mechanisms (including the Census Bureau’s Disclosure Avoidance System (DAS) 
demonstration engine) employ the discrete version of these distributions (to generate 
integers) – the two-sided geometric distribution (Laplace) and the discrete Normal 
distribution (Gaussian). This is to address computational and security difficulties inherent 
in using continuous distributions.
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Continued: An overview of differential privacy
• In general, each of the probability distributions are associated with one of two types of 

differential privacy – pure and approximate. 
ØPure differential privacy is the case when (𝜀, 𝛿 = 0). The mechanism is exclusively 

parameterized by 𝜀 > 0 (the privacy loss budget), which controls how much privacy 
loss an individual can suffer when a computation is performed using their data. The 
probability of a privacy loss of any individual exceeding 𝜀 is 0;

ØApproximate differential privacy (𝜀, 𝛿 > 0) is a relaxation of pure differential privacy 
that provides a less robust privacy guarantee. It guarantees that the probability of a 
privacy loss of any individual exceeding 𝜀 is bound by 𝛿;

ØThe parameter 𝛿 can be thought of as the probability that a catastrophic privacy 
breach/data release occurs in the presence of DP; 

ØBy contrast, 1 - 𝛿 is the probability that that the mechanism is 𝜀-differentially private.

• The geometric distribution satisfies the requirements of pure DP, while the Gaussian 
distribution satisfies approximate DP. 
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Noise Generation – Geometric and Gaussian 
Distributions

• The geometric and Gaussian distributions differ in two ways: the DP condition satisfied, 
and the variance generated by each mechanism.

ØThe geometric distribution satisfies pure DP (which is a stronger privacy condition 
than is approximate differential privacy), but with noise generated with a wider 
variance (its tails decay at a subexponential rate, 𝑒"#$);

ØThe Gaussian distribution satisfies approximate DP and its tails decay at a subguassian
rate (𝑒"$!/&'!), which results in a smaller noise variance.

• Which distribution is better depends on whether privacy or utility (variance and accuracy) 
of the estimates is more important. 

• Note that if pure differential privacy or approximate differential privacy for a very small 
𝛿 > 0 is needed, then the geometric distribution is preferred; while for the opposite 
situation the Gaussian distribution is preferred.
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Continued: Noise Generation – Geometric and 
Discrete Gaussian Distributions

• The concept of concentrated DP was 
introduced to address some of the 
analytic and computation concerns 
raised by approximate DP [DR16].

• A random mechanism satisfies 
concentrated DP if the privacy loss has a 
small mean and is subgaussian. 

• Concentrated DP was refined with the 
introduction of zero-concentrated DP 
(zCDP) by Bun and Steinke.

• They showed that there is a relationship 
between pure DP and zCDP: 𝜀-DP implies 
"
#
𝜀# -zCDP [BS16].

• Figure 1 demonstrates the relationship 
between geometric and discrete 
Gaussian mechanisms for 𝜀 = 0.5.
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Figure 1



Continued: Noise Generation – Geometric and 
Discrete Gaussian Distributions

• Note that the noise mechanism for 
zCDP is defined by two parameters 
𝜀, 𝛿 , whereas the noise 

mechanism for pure DP is solely 
defined by 𝜀 > 0, 𝜀, 𝛿 = 0 .

• There is no consensus for 
determining the value of 𝛿 – to 
insure against catastrophic events, 
the literature recommends setting 
𝛿 ≪ 𝑛!". For a modest-sized 
dataframe (694,675 records => 
Alaska), 𝛿 < 1.44e-6.

• Figure 2 illustrates how the choice 
of 𝛿 impacts the variance of the 
noise generated by the zCDP
mechanism.
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Figure 2



Continued: Noise Generation – Geometric and 
Discrete Gaussian Distributions
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• The figures below further illustrate how the choice of delta impacts the magnitude of noise generated by 
the zCDP mechanism, compared to two-sided geometric mechanism.



Continued: Noise Generation – Geometric and 
Discrete Gaussian Distributions

• The double-sided geometric distribution takes the form of:

∀𝑥 ∈ 𝑍, 𝑃 𝑋 = 𝑥 = ($/&")
($/&*)

; 𝑒" + /, and is symmetrical around 0.

• The discrete Gaussian distribution takes the form of:

∀𝑥 ∈ 𝑍, 𝑃 𝑋 = 𝑥 = ('()'*)!/!,!

∑-∈/ ('(-'*)
!/!,! , where 𝜇 is assumed to be 0 for purposes of DP.

• The discrete Gaussian has properties similar to those of the continuous Gaussian [CKS20]:

• The privacy guarantee is almost equal to the one offered by the continuous 
distribution;

• The discrete distribution offers the same or slightly better accuracy than does the 
continuous distribution; and

• Functionally, it is practical to sample the discrete Gaussian on a finite computer.
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Continued: Noise Generation – Geometric and 
Discrete Gaussian Distributions

• The zCDP algorithm used in this simulation was developed by Thomas Steinke at IBM [Dga].
• Here’s how the algorithm works:

1. The first step is to choose the values of 𝜀 𝑎𝑛𝑑 𝛿;
2. The algorithm then computes a value for 𝜌 such that 𝜌-CDP implies (𝜀, 𝛿)-differential privacy;

3. The parameter 𝜌 is used to determine the value of 𝜎# (Adding samples derived from either a continuous 
or discrete Gaussian distribution with parameter 𝜎# provides 𝜌-CDP for 𝜌 = Δ/2𝜎# (where Δ represents 
the sensitivity of the mechanism), the value of 𝜎# is determined by Δ/2𝜌).

• The Python code for the discrete Gaussian mechanism was adapted to the Census Bureau’s DAS 2020 
program.

• The simulation was run on a single-node stand-alone computer.

• The synthetic data microdata is based on the U.S. Synthetic Population 2010 (version 1) developed by RTI 
International [RTI]. It includes population and housing records for Alaska (694,675 records) and eight 
counties in California (Alpine, Fresno, Humboldt, Los Angeles, Riverside, Sacramento, San Francisco, and 
Santa Barbara – 15,568,335 records).
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Privacy Protected Data - Results
• The charts show DAS errors for 

tract data for three major race 
groups (White, Black, and 
American Indian Native 
Alaskan).

• All three runs set 𝜀 = 0.04.

• The ”noisy” estimates were 
generated using three  
mechanisms – Geometric, 
Gaussian 𝛿 = 0.0201, and 
Gaussian 𝛿 = 5.44e-8.

• The 𝛿 = 0.0201 Gaussian had 
the smallest variance followed 
by Geometric, and then the 𝛿 =
5.44e-8 Gaussian.
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Continued: Privacy Protected Data - Results
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• The charts show DAS errors for tract data for four major race groups (Asian, Native Hawaiian and Other Pacific Islander, Other, and 
Two or More).



Continued: Privacy Protected Data - Results
• The charts show DAS errors for 

block data for three major race 
groups (White, Black, and 
American Indian Alaskan 
Native);

• All three runs set 𝜀 = 0.04;

• The ”noisy” estimates were 
generated using three  
mechanisms – Geometric, 
Gaussian 𝛿 = 0.0201, and 
Gaussian 𝛿 = 5.44e-8;

• The 𝛿 = 0.0201 Gaussian had 
the smallest variance followed 
by Geometric, and then the 𝛿 =
5.44e-8 Gaussian;
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Continued: Privacy Protected Data - Results
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• The charts show DAS errors for block data for four major race groups (Asian, Native Hawaiian and Other Pacific Islander, Other, and 
Two or More).



Continued: Privacy Protected Data - Results
• These charts show the mean absolute error for Census blocks and tracts for the eight California counties.
• All three runs set 𝜀 = 0.1 for blocks and for tracts.
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Blocks

Mean Absolute Error

Geometric
Gaussian

δ = 0.0201 δ = 5.44e-6

All Blocks 167,400 17.61 8.31 31.41

Blocks with total population less than 100 121,538 15.15 7.55 25.01

Blocks with total population 100 to 499 41,894 23.02 10.00 45.63

Blocks with total population 500 to 999 3,289 34.64 13.21 74.42

Blocks with total population 1,000 or more 679 41.27 16.05 92.97

Tracts

Mean Absolute Error

Geometric
Gaussian

δ = 0.0201 δ = 5.44e-6

All Tracts 3,606 23.74 10.62 53.96

Tracts with total population less than 100 7 30.86 9.86 57.29

Tracts with total population 100 and 999 21 26.09 10.74 61.50

Tracts with total population 1,000 and 9,999 3,544 23.70 10.61 53.91

Tracts with total population 10,000 or more 34 24.76 11.90 48.95



Continued: Privacy Protected Data - Results
• These charts show the number of blocks and tracts that switched from majority (50%+) White to majority all other races 

and vice versa for the eight California counties.
• All three runs set 𝜀 = 0.04 for blocks and tracts.
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Blocks

Geometric Gaussian δ = 0.0201 Gaussian δ = 5.44e-6

White to 
Minority

Minority to 
White

White to 
Minority

Minority to 
White

White to 
Minority

Minority to 
White

All Blocks 167,400 29,301 15,177 21,577 12,008 34,384 18,295
Blocks with total population less than 100 121,538 26,872 12,157 20,314 10,287 29,812 13,966
Blocks with total population 100 to 499 41,894 2,398 2,878 1,247 1,647 4,484 4,062
Blocks with total population 500 to 999 3,289 26 129 16 67 80 235
Blocks with total population 1,000 or more 679 5 13 0 7 8 32

Tracts

Geometric Gaussian δ = 0.0201 Gaussian δ = 5.44e-6

White to 
Minority

Minority to 
White

White to 
Minority

Minority to 
White

White to 
Minority

Minority to 
White

All Tracts 3,606 13 15 10 6 40 39
Tracts with total population less than 100 7 1 1 1 0 2 0
Tracts with populations between 100 and 999 21 2 0 1 0 5 0
Tracts with populations between 1,000 and 9,999 3,544 10 14 8 6 33 39
Tracts with populations of 10,000 or more 34 0 0 0 0 0 0



Discussion
• These simulations demonstrate that the discrete Gaussian (zCDP) mechanism has better utility and 

accuracy than does the geometric mechanism.

• However, the gains in accuracy and utility come at the expense of less privacy.  The privacy loss can 
be mitigated by reducing the value of 𝛿.

• Even with the accuracy gains provided by the discrete Gaussian mechanism, small-population areas 
still are disproportionality impacted by additive noise compared with areas that have populations 
greater than the magnitude of the tails.
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